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State-Dependent Utilities 
MARK J. SCHERVISH, TEDDY SEIDENFELD, and JOSEPH B. KADANE* 

Several axiom systems for preference among acts lead to a unique probability and a state-independent utility such that acts are 
ranked according to their expected utilities. These axioms have been used as a foundation for Bayesian decision theory and 
subjective probability calculus. In this article we note that the uniqueness of the probability is relative to the choice of what 
counts as a constant outcome. Although it is sometimes clear what should be considered constant, in many cases there are 
several possible choices. Each choice can lead to a different "unique" probability and utility. By focusing attention on state- 
dependent utilities, we determine conditions under which a truly unique probability and utility can be determined from an 
agent's expressed preferences among acts. Suppose that an agent's preference can be represented in terms of a probability P 
and a utility U.That is, the agent prefers one act to another iff the expected utility of that act is higher than that of the other. 
There are many other equivalent representations in terms of probabilities Q, which are mutually absolutely continuous with 
P, and state-dependent utilities V, which differ from U by possibly different positive affine transformations in each state of 
nature. We describe an example in which there are two different but equivalent state-independent utility representations for 
the same preference structure. They differ in which acts count as constants. The acts involve receiving different amounts of 
one or the other of two currencies, and the states are different exchange rates between the currencies. It is easy to see how it 
would not be possible for constant amounts of both currencies to have simultaneously constant values across the different 
states. Savage (1954, sec. 5.5) discovered a situation in which two seemingly equivalent preference structures are represented 
by different pairs of probability and utility. He attributed the phenomenon to the construction of a "small world." We show 
that the small world problem is just another example of two different, but equivalent, representations treating different acts 
as constants. Finally, we prove a theorem (similar to one of Karni 1985) that shows how to elicit a unique state-dependent 
utility and does not assume that there are prizes with constant value. To do this, we define a new hypothetical kind of act in 
which both the prize to be awarded and the state of nature are determined by an auxiliary experiment. 

KEY WORDS: Constant acts; Elicitation; Exchange rates; Preferences; Savage's axioms; Small worlds. 

1. INTRODUCTION 	 on which state of nature occurs, we can rewrite Equation 

Expected utility theory is founded on at least one of (1) as 

several axiomatic derivations of probabilities and utilities 
from expressed preferences over acts (Anscombe and Au- 
mann 1963; deFinetti 1974; Ramsey 1926; Savage 1954). 
These derivations allow for the simultaneous existence of where Ui(z,) is the utility of prize zj given that state si 
a unique personal probability over the states of nature and occurs. Without restrictions, however, on the degree to 
a unique (up to positive affine transformations) utility which Ui can differ from Ui, for i # i ' ,  the uniqueness of 
function over the prizes such that the acts are ranked by the personal probability no longer holds. For example, let 
expected utility. For example, suppose that there are n q,, . . . , qn be another probability over the states such 
states of nature that form the set S = {s,, . . . , s,) and that pi > 0 iff qi > 0. Then for an arbitrary act f ,  
m prizes in the set Z = {zl,  . . . , z,,,). An example of an 
act is a function f mapping S to Z .  That is, if f (si) = z,, 
then we receive prize z, if state si occurs. (We will consider 
more complicated acts later.) Now suppose that there is 
a probability over the states such that pi = Pr(si) and that 

where Vi(.) = piUi(.)lqi when qi > 0 (Vi can be arbitrary 
when qi = 0). In this case, it is impossible to determine 

there is a utility U over prizes. By saying that acts are an agent's personal probability by studying his or her pref- 
ranked by expected utility, we mean that we strictly prefer 	 erences for acts. Rubin (1987) noted this and developed 
act g to act f iff 	 an axiom system that does not lead to a separation of 

probability and utility. Arrow (1974) considered the prob- 
lem for insurance (a footnote credits Rubin with raising 
this same issue in an unpublished 1964 lecture). 

If we allow the utilities of prizes to vary conditionally DeGroot (1970) began his derivation of expected utility 
theory by assuming that the concept of "at least as likely 
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see how it attempts to avoid the non-uniqueness problem The axiom that does most of the work is one that entails 
just described. In Section 3, we look at Savage's system stochastic dominance. 
with the same goal in mind. Section 4 provides a critical 
examination of the theory of deFinetti (1974). In Section 
5, we give an example illustrating the problem's persist- 
ence despite the best efforts of those who have derived 
the theories. While reviewing an example from Savage in 
Section 6, we see how close he was to discovering the non- 
uniqueness problem in connection with his own theory. In 
Section 7, we describe a method for obtaining a unique 
personal probability and state-dependent utility based on 
a proposal of Karni, Schmeidler, and Vind (1983). 

2. STATE-INDEPENDENT UTILITY 

Following VonNeumann and Morgenstern (1947), we 
generalize the concept of act introduced in Section 1 by 
allowing randomization. That is, suppose that the agent is 
comfortable declaring probabilities for an auxiliary ex- 
periment the results of which he or she believes would in 
no way alter his or her preferences among acts. Further- 
more, assume that this auxiliary experiment has events 
with arbitrary probabilities (e.g., it may produce a random 
variable with continuous distribution). Define a lottery as 
follows: If A,, . . . ,A, is a partition of the possible out- 
comes of the auxiliary experiment with a, = Pr(Aj) for 
each j, then the lottery (a,, . . . , am)  awards prize zj if A, 
occurs. We assume that the choice of the partition events 
A,, . . . , A, does not affect the lottery. That is, if 
B,, . . . , B, is another partition such that Pr(B,) = aj 
for each j also, then the lottery that awards prize zj when 
Bj occurs is, to the agent, the same lottery as the one 
described in terms of the A,. In this way, a lottery is just 
a simple probability distribution over prizes that is inde- 
pendent of the state of nature. Any two lotteries that 
award the prizes with the same probabilities are considered 
the same lottery. If L, and L, are the two lotteries (a,, 
. . . ,a,) and (PI, . . . ,Dm), respectively, then for 0 5 3, 
r 1, we denote by AL, + (1 - A)L2 the lottery [Ja, + 
(1 - J)P1, . * . , Aarn + (1 - J)Pml. 

If we consider only lotteries, we can introduce some 
axioms for preferences among lotteries. For convenience, 
we will henceforth assume that there are two lotteries such 
that the agent has a strict preference for one over the 
other. Otherwise, the preference relation is trivial and no 
interesting results are obtained. 

Axiom 1 (Weak Order). There is a weak order, 3 ,  
among lotteries such that L, 3 L, iff L, is not strictly 
preferred to L, . 

This axiom requires that weak preference among lot- 
teries be transitive, reflexive, and connected. If we define 
equivalence to mean "no strict preference in either direc- 
tion," then equivalence is transitive also. 

Definition 1 .  Assuming Axiom 1, we say that L,  is 
equivalent to L2 (denoted by L, - L,) if L, 3 L2 and L2 
+ L,. We say L2 is strictly preferred to L1 (denoted by L, 
< L,) if L1 + L2 but not L, + L,. 

Axiom 2 (Independence). For each L ,  L,, L2 ,  and 0 
< a < 1,  L1 + L2 iff a L 1  + (1 - a )L  3 a L 2  + 
(1 - a)L.  

A third axiom is often introduced to guarantee that 
utilities are real valued. 

Axiom 3 (Archimedean). If L1 < L2 < L3, then there 
exists 0 < a < 1such that L2 - (1 - a)L1 + a L 3 .  

Axiom 3 prevents L3 from being infinitely better than 
L, and L, from being infinitely worse than L2.  

With axioms equivalent to these three, VonNeumann 
and Morgenstern 11947) proved that there exists a utility 
over prizes U such that (a,, . . . , a,) + (PI, . . . ,Dm) iff 
xY=,aiU(zi) 5 xz, piU(zi). This utility is unique up to 
positive affine transformation. In fact, it is quite easy (and 
useful for the example in Sec. 5) to construct the utility 
function from the stated preferences. Pick an arbitrary pair 
of lotteries Lo and L, such that Lo < L1. Assign these 
lotteries the utilities U(Lo) = 0 and U(L,) = 1. For all 
other lotteries L ,  the utilities are assigned as follows: If 
Lo & L + L1, U(L) is that a such that (1 - a)Lo + a L 1  
- L.  If L < Lo, then U(L) = - a / ( l  - a) ,  where (1 -
a)L + aL1  - Lo (hence a # 1). If L1 < L,  then U(L) = 
l / a ,  where (1 - a)Lo + a L  - L1. The existence of these 
a values is guaranteed by Axiom 3 and their uniqueness 
follows from Axiom 2. 

To handle acts in which the prizes vary with the state 
of nature, Anscombe and Aumann (1963) introduced a 
fourth axiom designed to say that the preferences among 
prizes did not vary with the state. Before stating this ax- 
iom, we introduce a more general act, known as a horse 
lottery. 

Definition 2. A function mapping states of nature to 
lotteries is called a horse lottery. 

That is, if H is a horse lottery such that H(si) = Li for 
each i, then if state si occurs, the prize awarded is the prize 
that lottery Li awards. The Li can be all different or some 
(or all) the same. If H(si) = L for all i, then we say H = 
L. If H, and H, are two horse lotteries such that Hj(si) = 
LfJ)  for each i and J and if 0 a I1,  then we denote by 
aH1 + (1 - a)H2 the horse lottery H such that H(si) = 
aLy) + (1 - a)~!) for each i. Axioms 1 and 2, when 
applied to preferences among horse lotteries, imply that 
the choice of an act has no effect on the probabilities of 
the state of nature. 

Definition 3. A state of nature si is called null if for 
each pair of horse lotteries H, and Hzsatisfying Hl(sj) = 

H2(sj) for all j # i, H, - Hz.  A state is called non-null if 
it is not null. 

Axiom 4 (State-Independence). For each non-null state 
si, each pair of lotteries (L,, L,), and each pair of horse 
lotteries H,  and Hz satisfying Hl(sj) = H2(sj) for j # i, 
Hl(si) = L1, and H2(si) = L,, we have L, < L2 iff H1< 
Hz. 
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Axiom 4 says that a strict preference between two lot-
teries is reproduced for every pair of horse lotteries that 
differ only in some non-null state, and their difference in 
that state is that each of them equals one of the two lot-
teries. With this setup, Anscombe and Aumann (1963) 
proved the following theorem. 

Theorem 1 (Anscombe and Aumann). Under Axioms 
1-4, there exist a unique probability P over the states and 
utility U over prizes (unique up to positive affine trans-
formation) such that H1 > Hz iff 

where for each lottery L = (a,, . . . , a,), U(L) stands 
for X J " ~a)U(zj) .  

Even when the four axioms hold, there is no require-
ment that the utility function U be the same, conditional 
on each state of nature. As we did when we constructed 
Equation (2), we could allow Ui(zl) = aiU(zj)  + bi, 
where each ai > 0. Then we could let Q(s,) = a,P(s,)l 
EL=,a,P(s,). It would now be true that H,  2= H, iff 

The uniqueness of the probability in Theorem 1depends 
on the use of a state-independent utility U. Hence one 
cannot determine an agent's probability from his or her 
stated preferences unless one assumes that the agent's util-
ity is state-independent. This may not seem like a serious 
difficulty when Axiom 4 holds. We will see in Section 5, 
however, that the problem is more complicated. 

3. SAVAGE'S POSTULATES 

Savage (1954) gsve a set of postulates that do not rely 
on an auxiliary randomization to extract probabilities and 
utilities from preferences. Rather, they rely on the use of 
prizes that can be considered "constant" across states. 
Savage's most general acts are functions from states to 
prizes. Because he did not introduce an auxiliary random-
ization, he required that there be infinitely many states. 
The important features of Savage's theory, for this dis-
cussion. are the first three postulates and a few definitions. 
Some of the axioms and definitions are stated in terms of 
events, which are sets of states. Savage's postulates are 
consistent with the axioms of Section 2 in that they provide 
models for preference by maximizing expected utility. 

The first postulate is the same as Axiom 1. The second 
postulate requires a definition of conditional preference. 

Definition 4. Let B be an event. We say that f 3 g 
given B iff 

f '  3 g' for each pair f '  and g'  such that f '(s) = f (s) 
for all s E B, gl(s) = g(s) for all s E B, and f'(s) = 

gt(s) for all s B 
and f '  3 g' for every such pair or for none. 

The second postulate is an analog of Axiom 2 (see Fish-
burn 1970, p. 193). 

Postulate 2. For each pair of acts f and g and each 
event B, either f 3 g given B or g 5 f given B. 

Savage has a concept of null event that is similar to the 
concept of null state from Definition 3. 

Definition 5. An event B is null if for every pair of 
acts f and g, f 3 g given B. An event B is non-null if it 
is not null. 

Savage's third postulate concerns acts that are constant, 
such as f (s) = z for all s,  where z is a single prize. For 
convenience, we will call such an act f by the name z also. 

Postulate 3. For each non-null event B and each pair 
of prizes zl  and z2 (considered as constant acts), z l  3 z2 
iff z l  2= Z ,  given B. 

Savage's definition of probability relies on Postulate 3. 

Definition 6. Suppose that A and B are events. We say 
that A is at least as likely as B if for each pair of prizes z 
and w, with z < w, we have f, 2/ f, , where f,(s) = w 
i f s  E A, fA(s) = z i f s  $ A ,  f,(s) = w i f s  E B, and 
f,(s) = z if s $ B. 

Postulate 2 guarantees that with f, and f, as defined in 
Definition 6, either f, 2= f, no matter which pair of prizes 
z and w one chooses (as long as z iw) or f, 2= f, no 
matter which pair of prizes one chooses. 

Postulate 3 says that the relative values of prizes cannot 
change between states. Savage (1954, p. 25) suggested that 
problems in locating prizes that satisfy this postulate may 
be solved by a clever redescription. For example, rather 
than describing prizes as "receiving a bathing suit7' and 
"receiving a tennis racket" (whose relative values change, 
depending on which of the two states "picnic at the beach" 
or "picnic in the park" occurs), Savage suggested that the 
prizes might be "a refreshing swim with friends," "sitting 
alone on the beach with a tennis racket," and so on. We 
do not see how to carry out such redescriptions, however, 
while satisfying Savage's structural assumption that each 
prize is available as an outcome under each state. (What 
does it mean to receive the prize "sitting alone on the 
beach with a tennis racket" when the state "picnic in the 
park" occurs?) 

Our problem, however, is deeper than this. Definition 
6 assumes that the absolute values of prizes do not change 
from state to state. For example, suppose that A and B 
are disjoint and the value of z is 1for the states in A and 
2 for the states in B. Similarly, suppose that the value of 
w is 2 for the states in A and 4 for the states in B. Then 
even if A is more likely than B, but is not twice as likely, 
we would get f, < f, and we would conclude, by Defi-
nition 6, that B is more likely than A.  The example in 
Section 5 (using just one of the currencies) and our inter-
pretation of Savage's "small worlds" problem (in Sec. 6) 
suggest that it might be very difficult to find prizes with 
the property that their "absolute" values do not change 
from state to state even though their "relative" values 
remain the same from state to state. 
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4. DEFINETTI'S GAMBLING APPROACH 

deFinetti (1974) assumed that there is a set of prizes 
with numerical values such that utility is linear in the nu- 
merical value. That is, a prize numbered 4 is worth twice 
as much as a prize numbered 2. More specifically, to say 
that utility is linear in the numerical values of prizes, we 
mean the following: For each pair of prizes, (z, ,  z2) with 
2, < z2, and each 0 5 a :1, the lottery that pays zl with 
probability 1 - a and pays z2 with probability CY (using 
the auxiliary randomization of Sec. 2) is equivalent to the 
lottery that pays (1 - a)zl + az2 for sure. Using such a 
set of prizes, deFinetti supposed that an agent will accept 
certain gambles that pay these prizes. If f is an act, to 
gamble on f means to accept a contract that pays the agent 
c[f (s) - X] when state s occurs, where c and x are some 
values. A negative outcome means that the agent has to 
pay out, whereas a positive outcome means that the agent 
gains some amount. 

Definition 7. The prevision of an act f is the number 
x that one would choose so that all gambles of the form 
c[f - x] would be accepted for all small values of c, both 
positive and negative. 

If an agent is willing to gamble on each of several acts, 
then it is assumed that he or she will also gamble on them 
simultaneously. (For a critical discussion of this point, see 
Kadane and Winkler 1988; Schick 1986.) 

Definition 8. A collection of previsions for acts is co- 
herent if for each finite set of the acts, say f l ,  . . . ,f,  with 
previsions xl, . . . ,x,, respectively, and each set of num- 
bers c,, . . . , c,, we have 

Otherwise, the previsions are incoherent. 

deFinetti (1974) proved that a collection of previsions 
of bounded acts is coherent iff there exists a finitely ad- 
ditive probability such that the prevision of each act is its 
expected value. This provides a method of eliciting prob- 
abilities by asking an agent to specify previsions for acts, 
such as f(s) = 1 if s E A and f(s) = 0 if s & A .  The 
prevision of such an act f would be its probability if the 
previsions are coherent. As plausible as this sounds, the 
following example casts doubt on the ability of deFinetti7s 
program to elicit probabilities accurately. 

5. AN EXAMPLE 

Let the set of available prizes be various amounts of 
dollars. We suppose that there are three states of nature 
(which we will describe in more detail later) and that the 
agent expresses preferences that satisfy the axioms of Sec- 
tion 2 and Savage's postulates. Furthermore, suppose that 
the agent's utility for money is linear. That is, for each 
state i, U,($cx) = cU,($x). In particular, U,($O) = 0. We 
now offer the agent three horse lotteries, H1, H2,  and H,, 

whose outcomes are 

State of Nature 
31 32 S3 

Suppose that the agent claims that these three horse lot- 
teries are equivalent. If we assume that the agent has a 
state-independent utility, the expected utility of HI is 
U($l)P(s,). It follows from the three horse lotteries' being 
equivalent that P(s,) = 113 for each i. 

Next we alter the set of prizes to be various Japanese 
yen amounts. Suppose that we offer the agent three yen 
horse lotteries, H4,  H5,  and H6, whose outcomes are 

State of Nature 
S1 $2 $3 

If the agent claims that these three horse lotteries are 
equivalent, and if we assume that he or she uses a state- 
independent utility for yen prizes, then P(sl)U(Y1OO) = 

P(s2)U(Y125) = P(s3)U(Y150). Supposing that the 
agent's utility is linear in yen, as it was in dollars, we 
conclude that P(sl)  = 1.25P(s2) = 1.5P(s3). It follows 
that P(s,) = .4054, P(s2) = .3243, and P(s3) = .2703. It 
would be incoherent for the agent to express both sets of 
equivalences, since he or she is apparently now committed 
to two different probability distributions over the three 
states. This is not correct, however, as we now see. 

Suppose that the three states of nature represent three 
different exchange rates between dollars and yen. s, = ($1 
is worth YlOO), s2 = ($1 is worth Y125), and s3 = ($1 is 
worth Y150). Suppose further that the agent can change 
monetary units at the prevailing rate of exchange without 
any penalty. As far as this agent is concerned, HI and H3+1 
are worth exactly the same for i = 1, 2, 3 because in each 
state the prizes awarded are worth the same amount. A 
problem arises in this example: The two probability dis- 
tributions were constructed under incompatible assump- 
tions. The discrete uniform probability was constructed 
under the assumption that U($1) is the same in all three 
states, whereas the other probability was constructed un- 
der the assumption that U(Y100) was the same in all three 
states. Clearly these cannot both be true given the nature 
of the states. Both Theorem 1 and Savage's theory are 
saved because preference can be represented by expected 
utility no matter which of the two assumptions one makes. 
Unfortunately, this same fact forces the uniqueness of the 
probability to be relative to the choice of which prizes 
count as constants in terms of utility. There are two dif- 
ferent representations of the agent's preferences by prob- 
ability and state-independent utility. What is state-inde- 
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pendent in one representation, though, is state- dependent 
in the other. 

If we allow both types of prizes at once, we can calculate 
the marginal exchange rate for the agent. That is, we can 
ask, "For what value x will the agent claim that $1 and 
Yx are equivalent?" This question can be answered by 
using either of the two probability-utility representations, 
and the answers will be the same. First, with dollars having 
constant value, the expected utility of a horse lottery pay- 
ing $1 in all three states is U($1). The expected value of 
the horse lottery paying '/x: in all three states is 

using the linearity of utility and the state-specific exchange 
rates. By setting this expression equal to U($1), we obtain 
x = 121.62. Equivalently, we can calculate the exchange 
rate assuming that yen have constant value over states. 
The act paying Yx in all states has expected utility U(&) 
= .OlxU(Y100). The act paying $1 in all states has ex- 
pected utility. 

Setting this equal to .01xU(Y100) yields x = 121.62, which 
is the same exchange rate as calculated earlier. 

The implications of this example for elicitation are stag- 
gering. Suppose that we attempt to elicit the agent's prob- 
abilities over the three states by offering acts in dollar 
amounts and using deFinetti's gambling approach from 
Section 4. The agent has utility that is linear in both dollars 
and yen without reference to the states, hence deFinetti7s 
program will apply. To see this, select two prizes, such as 
$0 and $1, to have utilities 0 and 1, respectively. Then for 
0 < x < 1, U($x) must be the value c that makes the 
following two lotteries equivalent: L, = $x for certain, 
and L, = $1 with probability c and $0 with probability 1 
- c. Assuming that dollars have constant utility, it is ob- 
vious that c = x. Assuming that yen have constant utility, 
the expected utility of L,  is 1.2162xU(Y100) and the ex- 
pected utility of L, is cU(Y121.62). These two are the same 
iff x = c. Similar arguments work when x is not between 
0 and 1 and when the two prizes with utilities 0 and 1are 
yen prizes. Now suppose that the agent actually uses the 
state-independent utility for dollars and the discrete uni- 
form distribution to rank acts, but the eliciter does not 
know this. The eliciter will try to elicit the agent's prob- 
abilities for the states by offering gambles in yen (linear 
in utility). For example, the agent claims that the gamble 
c(f - 40.54) would be accepted for all small values of c, 
where f (s) = Y150 if s = s3 and YO otherwise. The reason 
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for this is that since Y150 equals $1 when s3 occurs, the 
winnings are $1 when s3 occurs, which has a probability 
of 113. The marginal exchange rate is Y121.62 for $1, so 
the appropriate amount to pay (no matter which state 
occurs), to win $1 when s3 occurs, is $113, which equals 
Y121.6213 = Y40.54. Realizing that utility is linear in yen, 
the eliciter now decides that Pr(s3) must equal 40.541150 
= .2703. Hence the eliciter elicits the wrong probability, 
even though the agent is coherent! 

The expressed preferences satisfy the four axioms of 
Section 2, all of Savage's postulates, and deFinetti's lin- 
earity condition, but we are still unable to determine the 
probabilities of the states based only on preferences. The 
problem becomes clearer if we allow both dollar and yen 
prizes at the same time. It is impossible, however, for a 
single utility to be state-independent for all prizes. That 
is, Axiom 4 and Postulate 3 would no longer hold. Things 
are more confusing in deFinetti's framework, because 
there is no room for state-dependent utilities. The agent 
appears to have two different probabilities for the same 
event, even though there would be no incoherency. 

6. SAVAGE'S "SMALL WORLDS" EXAMPLE 

In section 5.5 of Savage (1954), the topic of small worlds 
is discussed. An anomaly occurs in this discussion, and 
Savage implies that it is an effect of the construction of 
the small world. In this section, we briefly introduce small 
worlds and then explain why we believe that the anomaly 
discovered by Savage is actually another example of the 
non-uniqueness illustrated in Section 5 .  It is a mere co- 
incidence that it arose in the discussion of small worlds. 
We show how precisely the same effect arises without any 
mention of small worlds. 

A small world can be thought of as a description of the 
states of nature in which each state can actually be par- 
titioned into several smaller states, but we do not actually 
do the partitioning when making comparisons between 
acts. For a mathematical example, Savage mentioned the 
following case. Consider the unit square S = {(x, y) : 0 
5 x, y 5 1) as the finest possible partition of the states of 
nature. Suppose, however, that we consider as states the 
subsets f = {(x, y) : 0 5 y 5 1) for each x E [0, 11. Savage 
discovered the following problem in this example: It is 
possible to define small world prizes in a natural way and 
for preferences among small world acts to satisfy all of his 
axioms and, at the same time, consistently define prizes 
in the "grand world" consisting of the whole square S. It 
is possible, however, for the preferences among small 
world acts to be consistent with the preferences among 
grand world acts in such a way that the probability measure 
determined from the small world preferences is not the 
marginal probability measure over the sets F induced from 
the grand world probability. As we will see, the problem 
that Savage discovered results from using different prizes 
as constants in the two problems. It is not due to the small 
world but will actually appear in the grand world as well. 

Any grand world act can be considered a small world 
prize. In fact, the very reason for introducing small worlds 
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is to deal with the case in which what we count as a prize 
is actually worth different amounts depending on which 
of the subdivisions of the small world state of nature oc- 
curs. Therefore, we let the grand world prizes be non- 
negative numbers and the grand world acts all bounded 
measurable functions on S. The grand world probability 
is uniform over the square and the grand world utility is 
the numerical value of the prize. To guarantee that Sav- 
age's axioms hold in the small world, choose the small 
world prizes to be 0 and positive multiples of a single 
function h. Assuming that U(h) = 1, the small world 
probability of a set B = {X : x E B) is (from Savage 1954, 
p 89) Q(B) = SFq(x) dx, where 

Unless Si h(x, y) dy is constant as a function of x, Q will 
not be the marginal distribution induced from the uniform 
distribution over S. Even if Si h(x, y) dy is not constant, 
however, the ranking of small world acts is consistent with 
the ranking of grand world acts. Let ch(., .), considered 
as a small world prize, be denoted by 2.Let U(Z) = c 
denote the small world utility of small world prize Z. If 
f is a small world act, then for each Y,f (F) = 2 for some 
c. The expected small world utility of f is S : ~ [ f ( x ) ] ~ ( x )  
dx. Let the grand world act f corresponding to 7 be defined 
by f (x, y) = f(F)h(x, y). It follows from Equation (3) that 

Hence the expected small world utility of f is 

which is just a constant times the grand world expected 
utility o f f .  Hence small world acts are ranked in precisely 
the same order as their grand world counterparts, even 
though the small world probability is not consistent with 
the grand world probability. 

We claimed that the inconsistency of the two probabil- 
ities is due to the choice of "constants" and not to the 
small worlds. To see this, let the grand world constants be 
0 and the positive multiples of h. Then an act f in the 
original problem becomes an act f * with f *(x, y) = f (x, 
y)/h(x, y).  That is, the prize that f * assigns to (x, y) is the 
number of multiples of h(x, y) that f (x, y) is. We define 
the new probability for B, a two-dimensional Bore1 set, 

The expected utility of f * is now 

J-sf*(x,Y)h(x,Y)dvdx I s f ( x , y ) d v d x  

This is just a constant times the original expected utility. 
Hence acts are ranked in the same order by both proba- 
bility-utility representations. Both representations are 
state-independent but each one is relative to a different 
choice of constants. The constants in one representation 
have different utilities in different states in the other rep- 
resentation. Both representations satisfy Savage's axioms, 
however. (Note that the small world probability con-
structed earlier is the marginal probability associated with 
the grand world probability R,  so Savage's small world 
problem evaporates when the definition of constant is al- 
lowed to change.) Remember that the uniqueness of the 
probability-utility representation for a collection of pref- 
erences is relative to what counts as a constant. To use 
Savage's notation in the example of Section 5, suppose 
that we use yen gambles to elicit probabilities. Instead, 
however, of treating multiples of Y1 as constants, we treat 
multiples of gamble f (s,) = Y100, f (s,) = Y125, f (s,) = 

Y1.50 as constants. Then we will elicit the discrete uniform 
probability rather than the nonuniform probability. 

7. 	 HOW TO ELICIT UNIQUE PROBABILITIES AND 

UTILITIES SIMULTANEOUSLY 


There is one obvious way to avoid the confusion of the 
previous examples-elicit a unique probability without 
reference to preferences. This is DeGroot's (1970) ap- 
proach. It requires that the agent have an understanding 
of the primitive concept "at least as likely as" in addition 
to the more widely understood primitive "is preferred to." 
Some decision theorists prefer to develop the theory solely 
from preference without reference to the more statistical 
primitive "at least as likely as"; they need an alternative 
to the existing theories in order to separate probability 
from utility. 

Karni et al. (1983; see also Karni 1985) proposed a 
scheme for simultaneously eliciting probability and state- 
dependent utility. Essentially, in addition to stating pref- 
erences among horse lotteries, an agent is asked to state 
preferences among horse lotteries under the assumption 
that he or she holds a particular probability distribution 
over the states (explicitly, they say on p. 1024, "contingent 
upon a strictly positive probability distribution p' on S.") 
They also require the agent to compare acts with different 
"contingent" probabilities. Karni (1985) described these 
(in a slightly more general setting) as prize-state lotteries 
that are functions f from Z x S to id+ such that ~,,,~,,,, 
f ( z ,  s) = 1 and the probability f ( z ,  s) for each z and s 
is understood in the same sense as the probabilities in- 
volved in the lotteries of Section 2. That is, the results of 
a prize-state lottery are determined by an auxiliary ran- 
domization. The agent is asked to imagine that the state 
of nature could be chosen by the randomization scheme 
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rather than by the forces of nature. This is intended to 
remove the uncertainty associated with how the state of 
nature is determined so that a pure utility can be extracted 
by using Axioms 1-3 applied to a preference relation 
among prize-state lotteries. 

For example, suppose that the agent in Section 5 ex- 
presses a strict preference for the prize-state lottery that 
awards $1 in state 2 with probability 1[f($1, s,) = 11over 
g($l, s,) = 1. This preference would not be consistent 
with a state-independent utility for dollar prizes; however, 
it would be consistent with a state-independent utility in 
yen prizes. 

The pure utility elicited in this fashion is a function of 
both prizes and states, so it is actually a state-dependent 
utility. As long as the preferences among prize-state lot-
teries are consistent with the preferences among horse 
lotteries, the elicited state-dependent utility can then be 
assumed to be the agent's utility. There will then be a 
unique probability such that HI> H2 iff the expected utility 
of H ,  is at most as large as the expected utility of H2 .  The 
type of consistency that Karni et al. (1983) require between 
the two sets of preferences is rather more complicated than 
necessary. The following simple consistency axiom will 
suffice. 

Axiom 5 (Consistency). For each non-null state s and 
each pair ( f l ,  f , )  of prize-state lotteries satisfying 
~ , l l , f , ( z ,s) = 1 and some pair of horse lotteries HI  and 
H, satisfying Hl(sl) = H,(si) for all si # s and H,(s) = f l  
and H2(s) = f2 ,  we have H ,  > H, iff f l  > f z ,  where f1 
and f,  are lotteries that correspond to f ,  and f, as follows: 
f i  = [f , (z1,s), . . . , fi(z,, s)], i = 1, 2, in the notation 
of Section 2. 

Journal of the American Statistical Association, September 1990 

Theorem 3 (Fishburn). Under Axioms 1, 2, and 3, 
there exist real-valued functions W,, . . . , W, such that 
H,  < H, iff 

The W, that satisfy Equation (4) are unique up to a similar 
positive linear transformation, with W, constant iff si is 
null. 

We provide only a sketch of the proof of Theorem 2. 
Let (W,, . . . ,W,) be the state-dependent utility for horse 
lotteries guaranteed by Theorem 3, and let v be the utility 
for prize-state lotteries guaranteed by the VonNeumann 
and Morgenstern's theorem (1947). All we need to show 
is that there are c,, . . . , c, and positive a,, . . . , a,, such 
that for each i = 1, . . . , n, 

W,(Z) = a,V(z, s f )  + c,, for all z. (5) 

If Equation (5) is true, then it follows directly from Equa- 
tion (4) that U = serves as the state-dependent utility 
and P(s,) = a,/ XI=,  ak is the probability. The uniqueness 
follows from the uniqueness of the W, and l? To prove 
Equation (5), let s = s, for some j and suppose that HI ,  
H2,  f l ,  f 2 ,  f , ,  and f, are as in the statement of Axiom 5. 
Now consider the set Jc, of all horse lotteries H such that 
H(sl) = H,(s,) for all i # j. The stated preferences among 
this set of horse lotteries satisfy Axioms 1, 2, and 3. 
Hence there is a utility V, for this set, and Vj is unique up 
to positive affine transformation. Clearly, W, is such a 
utility, hence we assume that V, = W,. Next consider the 

This just says that preferences among prize-state lotteries set ?ijof all prize-state 
with all of their probabilities on the same state must be s,) = 

lotteries f that satisfy x;i'i,f ( z k ,  
also :!,1. The stated preferences among elements of 

reproduced as preferences between horse lotteries that 
differ only in that common state. 

Theorem 2. Suppose that there are n states of nature 
and m prizes. Assume that preferences among horse lot- 
teries satisfy Axioms 1-3. Also assume that preferences 
among prize-state lotteries satisfy Axioms 1-3. Finally, 
assume that Axiom 5 holds. Then there exists a unique 
probability P over the states and a utility U : Z X S + 
91, unique up to positive affine transformation, satisfying 
the following: 

where for each lottery L = (a,, . . . , a,,), U(L, s f )  
stands for 2;=,a, U(z, , si) .  

2. f 3 g iff 

The proof of Theorem 2 makes use of the following 
theorem from Fishburn (1970, p. 176): 

satisfy Axioms 1, 2, and 3. Hence there is a utility y that 
is unique up to positive affine transformation. Clearly V, 
with domain restricted to kj, is such a utility, hence we 
will assume that = l? The mapping T, : 3(;+5,defined 
by TI (H)(z, s) = 0 for all ( z ,  s) with s # sj and T,(H) = 
a, for z = z, and s = s,, where H(s,) = (a , ,  . . . , a,,,), 
is one to one and TI preserves convex combination. It then 
follows from Axiom 5 that for HI ,  H, E X,, W, (HI) 5 

W, (H,) iff V[T, (H,)] 5 V[T,(H,)]. Since both V, = W, 
and y = Vare unique up to positive affine transformation, 
we have W, = a,V + b, for some positive a,. This proves 
Equation ( 5 ) .  

8. DISCUSSION 

The need for state-dependent utilities arises out of the 
possibility that what may appear to be a constant prize 
may not actually have the same value to an agent in all 
states of nature. Much of probability theory and statistical 
theory deals solely with probabilities and not with utilities. 
If probabilities are only unique relative to a specified util- 
ity, then the meaning of much of this theory is in doubt. 
Much of statistical decision theory makes use of utility 
functions of the form U(0, d), where 0 is a state of nature 
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and d is a possible decision. The prize awarded when de- 
cision d is chosen and the state of nature is 0 is not explicitly 
mentioned. Rather, the utility of the prize is specified 
without reference to the prize. Although it would appear 
that U(8, d)  is a state-dependent utility (as well it might 
be), one has swept comparisons between states "under the 
rug," For example, if U(8, d)  = - (6' - d)', one might 
ask how it was determined that an error of 1 when 8 = a 
has the same utility as an error of 1 when 8 = b. 

DeGroot (1970) avoided these problems by assuming 
that the concept of one event being at least as likely as 
another is understood without definition. He then pro- 
ceeded to state axioms implying the existence of a unique 
subjective probability distribution over states of nature. 
(For a discussion of attempts to derive quantitative prob- 
ability from qualitative probability, see Narens 1980.) 
Further axioms governing preference could then be intro- 
duced. These would then lead to a state-dependent utility 
function. Axioms such as those of Savage (1954), Von- 
Neumann and Morgenstern (1947) and Anscombe and Au- 
mann (1963), and deFinetti (1974), which concern only 
preference among acts like horse lotteries, are not suffi- 
cient to guarantee a representation of preference by a 
unique state-dependent utility and probability. Direct 
comparisons must be made between lotteries in a specified 
state of nature and other lotteries in another specified state 
of nature. These are the prize-state lotteries introduced 
by Karni (1985). Assuming that preferences among prize- 
state lotteries are consistent with preferences among horse 

lotteries, a unique state-dependent utility and probability 
can be recovered from the preferences. 

[Received March 1989. Revised December 1989.1 

REFERENCES 

Anscombe, F. J . ,  and Aumann, R.  J. (1963), "A Definition of Subjective 
Probability," Annals of Mathematical Statistics, 34, 199-205. 

Arrow, K. J. (1974), "Optimal Insurance and Generalized Deductibles," 
Scandinavian Actuarial Journal, 1, 1-42. 

deFinetti, B. (1974), Theory or Probability (2 vols.), New York: John 
Wiley. 

DeGroot, M. H. (1970), Optimal Statistical Decisions, New York: John 
Wiley. 

Fishburn, P. (1970). Utility Theory for Declsion Making, New York: John 
Wiley. 

Kadane, J. B. ,  and Winkler, R.  L. (1988), "Separating Probability Elic- 
itation From Utilities," Journal of the ~ m e r i h n  ~tat&tical~ssoc;ation, 
83. 357-363. 

Karni, E. (1985), Decision Making Under Uncertainty, Cambridge, MA: 
Harvard University Press. 

Karni, E.,  Schmeidler, D . ,  and Vind, K.  (1983), "On State Dependent 
Preferences and Subjective Probabilities," Econometrica, 51, 1021- 
1031. 

Narens, L. (1980), "On Qualitative Axiomatizations for Probability The- 
ory ," Journal of Philosophical Logic, 9, 143-151. 

Ramsey, F. P. (1926), "Truth and Probability," in Studies in Subjective 
Probability, eds. H .  E.  Kyburg and H. E .  Smokler. Huntington, NY: 
Krieger, pp. 23-52. 

Rubin, H .  (1987), "A Weak System of Axioms for "Rational" Behavior 
and the Nonseparability of Utility From Prior," Statistics and Deci- 
sions, 5, 47-58. 

Savage, L. J .  (1954), Foundations of Statistics, New York: John Wiley. 
Schick, F. (1986), "Dutch Book and Money Pumps," Journal of Philos- 

ophy, 83, 112-119. 
VonNeumann, J . ,  and Morgenstern, 0 .  (1947), Theory of Games and 

Economic Behavior, Princeton, NJ: Princeton University Press. 


